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Pixels in quantized pictures are considered as cells in
a grid, but a pixel may be represented by a lattice point
placed at its center. It is argued that the perimeter
of an area is its grid point boundary , not its lattice
point boundary, the former always being 14 units greater
than the latter, whatever the shape of the area. Use of
the grid point boundary gives satisfactory values of
perimeter, P area, A , and compactness, Pd/A, with a
minimum value of 16 for P2/A. However~ quantized drawn
lines are most conveniently represented by the line joining
lattice points, if an empirical procedure is adopted to
remove ambiguities arising from the quantization.
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1. THE TECHNOLOGY OF PICTURE QUANTIZATION

Innumerable methods of quantizing pictures all have in common that

• the quantized picture is divided into elements, pixels, to each of which

is assigned a level of intensity and color specified by one or more

integers . Discussion in this note is restricted to square pixels, each

of the same size , arranged in a rectangular array and used to display a

one—bit , i.e. black—and—white , picture . The discussion could , however ,

be extended to multitonal pictures and to pixels arranged in a hexagonal

array or with other geometric variations .

The number of pixels in an array is clearly enumerable. Write

{~~ , Y~) as the identification of the pixel in the i—th column and j—th

row where 1 ~ i ~ m and 1 ~ j  ~ n if the pixels are in an m x n array.

As the result of quantizing a picture, each pixel will be either black or

white. This situation is quantifiedby giving each pixel the value of

O or 1, i.e. writing {~~ , Y~} = 0 if pixel {~~ , Y~} is black and ~~~ X~
} = 1

if’ it is white. The device which assigns the value 0 or 1 to each pixel

will work according to some rules : each pixel is associated in a determinable

way with an area of the original unq.uantized picture and is assigned a value

according to the color and saturation of that area . Let pixel 
~k’ X.~

}

be associated with an area F;j,~ in the original picture. Then the value

assigned to {~~ , Y~} will be discrete (0 or 1) while the value associated

with F ;. . is continuous. In the simplest case of the original picture
3’ ,J

itself being composed only of black or white areas, values could depend on

• the proportions of whiteness in areas so that the value associated with the

area C. . would be 0 if it were all black , 1 if it were all white and some1,J

intermedi ate value if a black—white boundary crossed the area. If the

value associated, with area F ; . . is ~ , i.e. if the white fraction of F;i,J i ,J
is a , the assignment rule takes the form (~~~, ~~} 1 if a ~ t else {~~ , ~~} 0

~1tIIr.ui.~~ -- 
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where the quantity r is the threshold for assigning to pixels the values

O or 1. It is also to be noted that {~~~, Y~} is not a place or a point;

it is merely an identifier or label for an element in a numerical array.

In practice , however , it often happens that the pixel array is displayed 
-

on a VDU or printer and in such a situation it is convenient to use the

label {X , !.} for the physical manifestation of’ the pixel, the black or

white area defined i — 1 ~ x ~ i, j  — 1 ~ y ~ 
j  where x and y are variables

giving distances along the co—ordinate axes in the usual way. But the

pixel labels must not be confused with the geometric variables.

2. MEASUREMENT OF AREA

If each pixel is of unit area, the area of the whole array is mn.
m n

The total white area in the array is ) ~ {X. , Y .  }. However, this method
i=1j=l~

•1 
~

of’ double summation is often inconvenient for measuring areas and invest-

igators have sought to use more practicable methods such as the simple

mensuration formulae, e.g. base x height for the area of a rectangle.

Kulpa (1) and Sankar and Krishnamurthy (2) have proposed measuring area

by using Pick’s theorem (3) which states that the area A of a polygon, all

the vertices of which lie on a grid, is given by A = ~b + I — 1 where b is

the number of boundary points of the polygon which are also grid points and

i is the num~ber of grid points in the interior of the polygon.

Consider the polygon with the pixels 
~~i’ 

il}’ ~~~ I~
}
~ 

{~3~ 131 and

(X 1, Y3}at its vertices. This is a square with three pixels along each

side. There are 8 pixels in the boundary of this square and 1 in the

interior and with b 8 and i 1, Pick’s theorem gives an area of 14.

Yet obviously the area of the square is 9. The apparent contradiction

_____ _____ - —.
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comes from using identifiers of pixels as the locations of points.

Although a. square can be unambiguously specified by referring to the

pixels which constitute its corners, a pair of pixels do not (in the

absence of further elaborate definition) define an open line. It is

possible to associate a line with one or more pixels — namely, the line

forming the perimeter of the area defined by the pixels; but this line

cannot be independently specified by the labels which specify the pixels.

Let (xi, Y~) be a point which is considered to represent the pixel

{x1, Y~). This point (Xi, Y~) could be placed anywhere within the area

of the pixel; let it be placed in the center of the pixel as in Fig. 1,

which shows the square defined by the pixels represented by the points

(X1, Yj ) ,  (x3, Y~), (x3,Y3) and (x1, Y3). Whereas the square defined by •

the pixels (X1, i~1, etc. has an area of 9 units and a perimeter of 12

units, that defined by the points (x1, Y1) ,  etc. has an area of 14 units

and a perimeter of 8 units . The same would be true if each point (Xi, Y~)

were placed elsewhere within the pixel it represents, e.g. in the bottom

left—hand corner. This example exemplifies the errors in measurements of

area and perimeter which arise if areas (or the labels of areas) are confused

with points (or the labels of points).

The boundary of’ the square in Fig. 1 is defined by the points (x
0
,y
0

) ,

(x 3, 
~~~~~~ 

(x 3, y3) and (xô , y3). Since area is specified by pixels which

are unit cells of the grid, it is convenient to refer to points such as —

(x. , y .) as grid points, to be distinguished from points such as (x., Y.)
3’ J i 

~) :-t t ofl 0
which are referred to as lattice points. This nomenclature allow~ the 

0

situation to be described without ambiguity: the perimeter of a quantized

area is its grid point boundary and the size of an area is given by the
- S?[C~AL

_ _  _ _ _ _ _ _ _ _ _  _  _ _ _ _  

L~. _ _ _

_ _ _  - - ~~~~~~~~~~~~~~ ~~~~~~~
- -

~~~~
‘
~ ~~~~~~~~~



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~ 
_
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

-_ _ — - — -  - -
~ _ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

— 1 4 —

number of lattice points (i.e. the number of pixels) contained within it

(see below).

3. CONSEQUENCES OF DISTINGUISHING GRID AND LATTICE POINTS

It is first to be noted that the grid points and the lattice points

define two interleaved networks, both of which are square nets in the case

under consideration. Furthermore, each unit cell of the grid (i.e. each

pixel {~~~, Y~ }) contains ju st one lattice point (i .e.  the point (xi, Y~))

and each unit cell of the lattice (e.g. the cell defined by the points

(X., Y.), (X
~+1, 

Y~)~ (X141 Y~41) and (X1, Y~~1)) contains just one grid

point (viz, the point (xi, ~~~~ The following arguments apply only to

simply—connected regions, i.e. areas containing no holes; they can ,

however, be readily extended to encompass multiply connected regions

(Cf. (2)). Consider such a region B consisting of pixels with the value

1, all other pixels in the m x n array having the value of 0.

(i) The grid boundary of B encloses all the lattice points which represent

the pixels constituting B, and no other lattice points. This follows

immediately from the definitions of the terms. Formally, if any lattice

point representing one of the pixels within R is itself outside the boundary

then that pixel is outside the boundary and the boundary is false, i.e.

is not the true perimeter of ~~ . And if, within the boundary, there is a

1atti~~point representing a pixel not contained in B, then that pixel is

a hole in B which is impossible since B is simply connected and has no

holes.

(ii) The area of .~ is the area within the grid. boundary. This follows

from Ci) since each lattice point represents the area of its corresponding

pixel.

hh1.  --- - ~~~~~~~~ ~~~~ _L ___ —~~~~—
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(iii) The lattice boundary (namely, the boundary formed by the lattice

points representing all the pixels the edges or vertices of which contribute

to the grid boundary ) encloses all the grid points enclosed by the grid

boundary and no other grid points. For if any grid point enclosed by the

grid boundary were outside the lattice boundary it would be associated with

a pixel which contributed to the grid boundary but was not represented by

a lattice point in the lattice boundary, which contradicts the definition;

from Ci) there can be no grid point within the grid boundary which is not

associated with a pixel contained in B; and also from (i) no grid boundary

point can lie within the lattice boundary.

(iv) The area within the lattice boundary is the number of grid points

enclosed by the grid boundary. This conclusion follows from the arguments

of (iii) and (ii) if the representation is inverted so that a grid point

(xi, y~) is taken to represent the area of the corresponding unit cell of

the lattice, specified by the points (Xi, Y~)~ (X1~1, Y~)~ (X~~1, 
~~~~~ 

and

(x1, Y~~1).
Cv) The number of grid boundary points, g~ and the number of lattice

boundary points, tb’ are related by ~~ = tb + 14. Let the number of internal

lattice points be 
~ 

and, as before , the number of internal grid points be

~~ 
By Pick’s theorem and (i i ) ,  the area of ~~~, is + L.  = ~~~ + — 1.

And by Pick ’s theorem and (iv) , the area within the lattice boundary is

• 
~~b + L i 

— 1. On eliminating ~~ between the two equations , L~ drops

out and it follows that g~, — + 14. The conclusion holds whatever the

shape of the area , but in areas only one pixel wide, the lattice point

boundary turns back on itself and encloses zero area .

(vi ) Grid boundary points and lattice boundary points are alway s 14—war

connected for areas on a square grid. The connectedness of the points of

-— ~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~ ~~~
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the grid boundary arises frori the nature of the grid. The connectedness

of lattice boundary points arises because areas which touch only at one

or more vertices are separate and distinct, so that two lattice boundary

points which are separated by v’~ units of distance represent pixels which

either are from two distinct areas or else have a common neighbor repre-

sented by a lattice point which is also in the lattice boundary.

14. THE COMPACTNESS OF AREAS

The dimensionless quantity P2/A, the square of the perimeter divided

by the area , is the most frequently used measure of the compactness of areas

in the Euclid.ean plane ( 14) and. its minimum value is 14IT when the area is a

circle. Rosenfeld (5) has shown that certain definitions of perimeter

can lead, in digitized objects, to values of P2/A less than 14ir, while Sankar

and Krishnamurthy (2) have pointed to a way of’ defining both perimeter and

area of’ digitized objects so that P2
/A > 14ir always, although they have not

shown that their measure has a definite minimum value.

If the perimeter of an area is taken as its grid—point boundary , then

for any area , of whatever shape , the length of the perimeter , P , is not less

than the perimeter of the rectangle , with sides parallel to the co—ordinate

axes , which just contains the area; and if the area has no re—entrant

features P equals the perimeter of’ the circumscribed rectangle (Fig.2).

For a perimeter of given length , P2/A is a minimum for maximum A , namely

the area of the rectangle itself. It then follows that if areas are

considered in conjunction with the perimeter given by the grid point

boundary , the minimum value of P2/A is 16 when the area is a square oriented

parallel to the co—ordinate axes .

It is of interest to note that if a circle of radius r (where r is an

- —- 
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integer) is centered at a grid point and then quantized , the argument just

given shows that the grid—point boundary of the quantized area is of’ length

8r so that, for large r , as A approximates to hr2 (6), P2/A tends to

614/ir~2O.14. The boundary length must be multiplied by i n 4  to give the true

value of the original curve, i.e. the circumference of the circle.

Multiplication of the digital length of an arbitrarily shaped boundary by

this factor is a method recommended for estimating the length of a smooth

curve from its digitized representation (7 ) .

5. THE QUANTIZATION OF LINES

The previous discussion has been concerned with the results of quantizing

an area and the significant line involved — the perimeter of the area — has

been considered as the boundary of the quantized area. Slightly different

considerations apply if the picture being quantized is a drawn line rather

than an area or a computer—generated line, although a drawn line is inevitably

a long but very narrow area. Suppose that the line is white on a black

ground. The questions arise: what is the minimum width of the drawn line

if the quantization is to produce an unbroken line; and how is the quant—

ization to be interpreted?

Let the width of the line be w and. assume that the area F .  . of the
1,3

picture, which is quantized as the pixel {X , Y~ }, is isomorphous with the

pixel , i.e. is a square with sides of length A . Assume also that there is

neither gap nor overlap between adjacent picture areas, e.g. between and.

which are quantized as adjacent pixels . Suppose , as before, that
1 ...,J,

~~~ Y~) is given the value 1 if a fraction a of 
the square 

~~~ 
is white

and if r ~ a ~ 1. (The case of quantizing the line and ascribing

many bits, i.e. many gray levels, to the pixels has been considered by
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IC].aasman (8)) .  Then if w/A < in the line will not appear in the quantized

picture when it is running parallel to either x or y axes ; and from

consideration of diagonal lines it is found that it w/A < T~ (1 — (1 — in) 2)

the line will not appear in the quantized picture, whatever its direction.

However, if the quantized line is to have no gaps in it, special cases must

be allowed for. If the line is nearly parallel to the y—axis, say , and if’

it covers the boundary between the two regions ~ . . and ~~~~ .,  it is
1 ,,]

necessary to have w/A ~ 2t for at least one of the pixels {~~~, Y,~
} or

} to be set at the value of 1; and if the boundary runs exactly

along the center of’ the line, both of these pixels will be set at 1. The

general case of’ arbitrary in and a line inclined at an arbitrary ahgle is

very complicated, but for the present purposes it suffices to consider the

usual practical situation of in = ~ for which {~~~, Y~} = 1 only if at least

half the area of ~. . is white. The preceding argument then requires
1,3

w ~ A. A line of’ width A inclined to the co—ordinate axes will sometimes

set at the value 1 successive pixels which are 1k—way connected but some-

times ones which are diagonally placed, i.e. only 8—way connected. If it

were to be requir c~ that a.1l related pixels of a quantized line should be

14—way connected, it would be necessary to take w ~ A /~ , although in this

case the line would frequently be digitized as two pixels thick (Fig.3). 4

Now, a drawn line of finite thickness is often interpreted as a

geometrical line, Infinitesimally thin. If the drawn line could be

quantized as a single string of pixels, there would be no difficulty in

using the line connecting the center points (X1, X~
) of the pixels as the

digital version of the geometrical line which the drawn line represents.

However, the examination above of the qu.azitization of drawn lines shows

- - 
~~~~~~J~~

- T :
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that in practice the quantization will in most cases include ambiguities .

Although these ambiguities are no greater than those included in the

physical thickness of the drawn line, they are likely to have more serious

effects since the purpose of’ quantization is often to provide data for

numerical analysis of a kind for which the drawn line cannot be used.

The simplest procedure for dealing with the quantization is to take as

the digitized drawn line the line joining the centers of the pixels and

to resolve the ambiguities by a systematic empirical procedure: in the

case of a closed curve, using the outermost layer of pixels and in the

case of’ open curves taking (say) the leftmost—uppermost possibility when

a choice is presented (see Fig. 3). This would provide a line the

successive points of which might be 8—way connected, so that the line

is different in character from the boundary of an area , the points of

which are necessarily only 14—way connected. The two lines have the

further distinction that they could not be superposed: the digitized

drawn line is represented by lattice points while the edge or boundary

of an area is delineated in grid points.

6. SUNW~RY AND CONCLUSIONS

The distinction between grid points and lattice points is a valid.

one (cf.(9)) and its use removes some difficulties and paradoxes which

have crept into discussion of’ quantized pictures. An area can be quantized

only as an array of area elements (pixels), not as an array of points ,

although a pixel may be represented by a lattice point. A pixel, and so

an area comprising many pixels, is bounded by grid elements: in some

accounts , e.g. (10), this is recognized; in some, e.g. (1) which refers to

______________________ - 
.-,
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a boundary defined by raster points , it is unclear whether the boundary

is taken to be on the grid or on the lattice; and in some cases, e.g.

(2), the boundary is unequivocally taken to be defined by lattice points,

which is an erroneous procedure according to the present argument . It

is of note that the grid elements which form the boundary or perimeter

of an area may be expressed as direction vectors so that the perimeter

can be described by a chain of such vectors and these vectors are then

specified by a 4—vay coding scheme (7) .

Use of the grid—point boundary as perimeter of’ an area also provides

a measure of compactness , P2/A , which does not violat e the conclusions of

Euclidean geometry and which has a minimum value, 16, for a square area

oriented parallel to the co—ordinate axes.

Although drawn lines are narrow strips of area, the possibility of

meeting ambiguities in quantized drawn lines can be avoided by using a

procedure different from that used with perimeters and taking a line

defined by lattice points instead of a line defined by grid points. Thi s

kind of line, which may be expressed as a chain of vectors specified by

14 —way or 8—way coding schemes , has been extensively considered by Freeman

(11). The extent to which the quantized line approximates the true

position of the drawn line is considered by Klaasman (8) .

____________________________________________
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Figure Captions

Fig. 1. A square of’ pixels , illustrating the distinction between grid

points (xi, y3
) ,  lattice points (xi, Y~) and pixels {

~~, }.

Fig. 2. The perimeter of the shaded area , consisting of a number of

pixels,is equal to the perimeter of the circumscribing rectangle .

Fig. 3. The quantization of two lines and a circle when a square of

side of length A in the original picture is registered as a

pixel if at least half the square is covered by the drawn line .

The two lines and the circle ( not centered on a grid point) are

the same in the three cases illustrated and the widths of the

drawn lines are (a) 3A/14, (b) A and (c) x&.
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Pixels in quantized p i c t u r e s  are  c o n s i d e r e d  ~is cells i n  .i g r i d , b u t  a p ixe l
may be represented b y a lattice point p laced a t  its center. It is argued that
the parimeter of an area is its grid point bounda ry, not its lattice point
boundary , the former always being 4 units greater than the latter , whatever
the shape of the area. Use of the grid point boundary g ives satisfactory
vaftes of parimeter , P, area , A , and compactness , P2/A , with a minimum of 16

for P2/\ However , qu antized drawn lines a re most convenie ntl y represented
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20. Abstract continued. . ,. . -

by the line joining la tt ice points , if an emp irical proced ure is adopted to
remove ambituities arising f rom the quantization.
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